Communications to the Editor

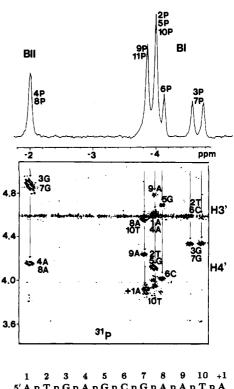
Adjacent G:A Mismatch Base Pairs Contain B₁₁ **Phosphodiesters in Solution**

Shan-Ho Chou,^{†,‡} Jya-Wei Cheng,[§] Oleg Yu. Fedoroff,^{II} Vasily P. Chuprina,[∥] and Brian R. Reid^{*.1.§}

> Howard Hughes Medical Institute Seattle, Washington 98195 **Biochemistry Department**, University of Washington, Seattle, Washington 98195 Chemistry Department, University of Washington, Seattle, Washington 98195 Research Computer Center, USSR Academy of Sciences, Pushchino, 142292, Moscow, USSR

> > Received September 13, 1991

The C3'-O3'-P segment of the backbone chain in B-DNA oligomers usually has a B_1 conformation in which the torsion angles ϵ (C3'-O3') and ζ (O3'-P) are (t,g^-) .¹ Although the B₁₁ (g^-,t) conformation is proposed as an alternative structure for the backbone of B-DNA,^{2,3} it is usually considered to be a higher energy form of B₁, and its occasional occurrence in DNA crystal structures is often attributed to crystal packing forces.^{4,5}


Analysis in solution by NMR⁶⁻⁹ and Raman spectroscopy¹⁰ is ambiguous. An observed $J_{H3'-P}$ of say 5 Hz has four solutions for ϵ , namely, -75°, -10°, 130°, and 195°; the former range (g⁻) constitutes B_{II} and the latter range (t) constitutes B_{I} phosphates. Often the backbone conformation in solution is arbitrarily constrained to the B_I conformation,^{6,7,9} and clear evidence for B_{II} phosphates is lacking.

The unusual DNA undecamer [d(ATGAGCGAATA)]₂ forms a remarkably stable B-type duplex with four internal G:A mismatches, for which Li et al. have proposed a novel hydrogenbonding scheme.¹¹ We have used several hundred NMR-derived proton distance constraints (many of them unexpected) to generate 22 distance geometry structures for this unusual duplex. In every one of these structures the phosphate linkers connecting G3 to A4 (4P) and G7 to A8 (8P) at the adjacent mismatch sites converged to a $B_{11} \epsilon(g)$ conformation. Concomitant with this backbone rearrangment, the ³¹P resonances of these two phosphates shifted downfield by ca. 2 ppm from the other B_1 phosphates. This is the first clear demonstration of a DNA B_{II} phosphate in solution, and it is confirmed by Monte Carlo methods.

(1) Arnott, S.; Campbell, P. J.; Chandrasekharan, R. In CRC Handbook of Biochemistry and Molecular Biology; CRC Press: Cleveland, OH, 1975; Vol. 2, pp 411-422

- (3) Prive, G. G.; Heinemann, U.; Chandrasegaran, S.; Kan, L. S.; Kopka,
- (4) Dickerson, R. E.; Goosdell, D. S.; Kopka, M. L.; Pjura, P. E. J. Biomol. Struct. Dyn. 1987, 5, 557-579
 - (5) Jain, S.; Sundaralingam, M. J. Biol. Chem. 1989, 264, 12780-12784.
- (6) Sklenar, V.; Bax, A. J. Am. Chem. Soc. 1987, 109, 7526-7528.
 (7) Nikonowicz, E.; Roongta, V.; Jones, C. R.; Gorenstein, D. G. Biochemistry 1989, 28, 8714-8725
- (8) van de Ven, F. J. M.; Hilbers, C. W. Eur. J. Biochem. 1988, 178, 1-38. (9) Baleja, J. D.; Pon, R. T.; Sykes, B. D. Biochemistry 1990, 29, 4828-4839.
- (10) Benevides, J. M.; Wang, A. H.-J.; van der Marel, G. A.; van Boom, J. H.; Thomas, G. J. J. Biochemistry 1988, 27, 931-938

(11) Li, Y.; Zon, G.; Wilson, W. D. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 26-30.

5' A p T p G p A p G p C p G p A p A p T p A ApTpApApGpCpGpApGpTpA5

³¹P-¹H heteronuclear correlation spectrum of [d(AT-Figure 1. GAGCGAATA)]2 at 30 °C. The one-dimensional ³¹P spectrum is shown at the top with H3'/H4'/H5' chemical shifts on the vertical axis. The peak labeled B₁₁ at -2 ppm (corresponding to two phosphates) is downfield-shifted by ca. 2 ppm from the other peaks. The $(n-1)H3'-(n)^{31}P$ crosspeaks (upper) are connected to the $(n)^{31}P(-n)H4'$ crosspeaks by vertical lines and are labeled with residue numbers. The combined (n - 1)H3'- $(n)^{31}$ P-(n)H4' correlations lead to unambiguous assignments for most of the phosphorus peaks. The downfield-shifted peaks are obviously 4P and 8P. As observed by others,14 the 4-bond 31P-H4' crosspeaks are invariably more intense than the 3-bond ${}^{31}P-H5'(R)/H5'(S)$ crosspeaks.

Firstly, all nonexchangeable protons, including the stereospecific H5'(R)/H5'(S) protons of 3G/7G, were assigned. Many unusual NOEs around the adjacent G:A mismatch pairs were detected: these included strong 4A and 8A crosspeaks between (n)AH2-(m)+ 1)H1', (n)AH2-(m + 1)H4', and (n)AH2-(m + 1)H5' protons, as well as several other unexpected intensities (Chou et al.). These atypical NOEs, combined with all other measuremable NOEs, were converted into distance constraints for the DSPACE program,¹² from which 22 independent structures were generated. Experimental lower-bound constraints were used to restrict backbone torsional angles to ranges consistent with the observed backbone coupling constants and NOEs, as described by Kim et al.,¹³ and the DG structures were further refined by back-calculation against the experimental NOESY spectra.¹² The refined structures all exhibited respectable helicity and converged to a narrow family of structures with small pairwise RMSD values (0.3-0.9 Å). Values of $-50^\circ \pm 4^\circ$ for ϵ and $\pm 103^\circ \pm 13^\circ$ for ζ were observed for 4P and 8P, compared to values of $175^{\circ} \pm 15^{\circ}$ and $-85^{\circ} \pm$ 15° (i.e., t,g^{-}) for the other phosphate steps. Furthermore, exceptionally large twist angles of 77° were found at the G3-A4

[†]Howard Hughes Medical Institute.

[‡]Biochemistry Department, University of Washington.

Chemistry Department, University of Washington.

USSR Academy of Sciences.

⁽²⁾ Gupta, G.; Bansal, M.; Sasisekharan, V. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 6486-6490.

⁽¹²⁾ Banks, K. M.; Hare, D. R.; Reid, B. R. Biochemistry 1989, 28, 6996-7010.

⁽¹³⁾ Kim, S. G.; Lin, L. J.; Reid, B. R. Biochemistry, in press.

and G7-A8 mismatch steps, while much smaller twist values of 16-30° were found for all other base pair steps.

Secondly, two phosphorus resonances shifted downfield from ca. -4 to -2 ppm in the one-dimensional ³¹P spectrum. From a ³¹P-¹H correlation experiment,^{6,14} these markedly downfield-shifted ³¹P peaks were assigned to 4P/8P (i.e., 3GpA4 and 7GpA8) via the already assigned H3'/H4' protons, see Figure 1.

Thirdly, to search more widely for alternate structures, a Monte Carlo conformational search¹⁵⁻¹⁷ incorporating the refined NOE distance constraints was performed on the dinucleotide steps 3G-4A and 5G-6C using a modified program for nucleic acid molecules (Chuprina). Twist, roll, and slide and x-, y-, and z-displacements were used as variables, the sugar conformation was varied throughout the S domain, and the χ angles were restricted to the broad anti range to reduce the search time. Twelve million different dinucleotide conformations were generated starting from a B-form model. Those conformations that did not fit the experimental NOE distance constraints were rejected, and only the remaining \sim 300 that fit all of the experimental data were used for statistical analysis. For the ~ 300 acceptable 3G-4A conformers, the ϵ angles were all in the -120° to -80° range and all ζ angles were ca. +170° (i.e., no t,g^- conformers), while the corresponding angles in the \sim 300 allowed G–C steps were +160° \pm 30° and -120° \pm 60°, respectively (i.e., all t,g^{-}).

Our observation of a 2 ppm ³¹P downfield shift and a 77° twist at the 3GpA4 step agrees with previously proposed shift/twist correlations.^{3,18,19} Furthermore, our refined values of ca. +105° for ζ and ca. -150° for α in the B_{II} phosphate are in qualitative agreement with Gorenstein's proposal¹⁸ that $\zeta(t) - \alpha(t)$ phosphates should resonate downfield of $\zeta(g^-) - \alpha(g^-)$ conformations. However, the correlations between ³¹P chemical shift and $J_{\text{H3'-P}}$ proposed by Gorenstein and co-workers^{14,20} are not borne out by our results. These authors^{14,20} predicted that a predominantly B_{II} conformation should have a phosphorus chemical shift of -3.0 ppm and a $J_{H3'-P}$ value of 10 Hz. The chemical shift of the 4P and 8P B₁₁ phosphates ($\epsilon = -50^{\circ}$) is -2.0 ppm (about twice the predicted downfield shift), and they have $J_{H3'-P}$ values of less than 5 Hz rather than the predicted 10 Hz, suggesting that the assumptions underlying the predictions need to be reexamined. While ζ and α appear to be correlated to the ³¹P chemical shift, ϵ and $J_{\text{H3'-P}}$ do not.

In a recently published paper, Li et al.¹¹ reported the construction of an energy-minimized model of an ATGAGC/ GCGAAT hexamer containing adjacent G:A mismatch base pairs that satisfied their partial NMR distance data. In constructing this model, all torsional angles were kept as close as possible to standard B-form DNA values (i.e., B₁ phosphates were imposed). In contrast, the structure generated from our full data set of refined NMR distances (with no prior backbone assumptions), together with the anomalous chemical shift of the phosphodiester linking the adjacent GA pairs, strongly suggests that this step involves a B_{11} backbone conformation and that a B_1 conformation at this step is incompatible with a complete set of experimental distance data. Finally, we note that 3P and 7P, preceding the B_{11} phosphates at the mismatch site, are shifted upfield to ca. -4.7 ppm from the ca. -4 ppm shift of the normal B_I phosphates.

Acknowledgment. This work was supported by NIH Grant GM32681.

Registry No. Guanine, 73-40-5; adenine, 73-24-5; d(ATGAGCGAA-TA), 116338-86-4.

- (15) Zhurkin, V. B.; Lysov, Y. P.; Ivanov, V. I. Biopolymers 1978, 17, 377-412.
- (16) Go, N.; Scheraga, H. A. Macromolecules 1970, 3, 178-187.
 (17) Miller, K. J. Biopolymers 1979, 18, 959-980.
 (18) Gorenstein, D. G. In Phosphorus-31 NMR: Principles and Applications; Gorenstein, D. G., Ed.; Academic Press: New York, 1984.
 (19) Ott, J.; Eckstein, F. Biochemistry 1985, 24, 253-258.
 (20) Decenter V. A. Marcin, C. B. Connecting, D. G. Biochemistry 1900.
- (20) Roongta, V. A.; Jones, C. R.; Gorenstein, D. G. Biochemistry 1990, 29, 5245-5258.

Expedient Assembly of Carbocyclic, Heterocyclic, and Polycyclic Compounds by Me₃Sn Radical Mediated Carbocyclizations of Dienes and Trienes: A Novel Oxidative Cleavage of the C-Sn Bond

Stephen Hanessian* and Roger Léger

Department of Chemistry, Université de Montréal Montréal, Québec, Canada H3C 3J7 Received November 15, 1991

The formation of carbocyclic and heterocyclic compounds from terminal dienes by free-radical processes has received considerable attention in recent years.¹⁻⁵ However, except for a single example involving a transannular reaction,⁶ and excluding vinylic radicals,⁷ the use of trialkylstannyl radicals for the carbocyclization of dienes has remained largely unexplored. This is probably due to early reports of mono- or bis-addition without cyclization^{6,8} or due to the view that the stannyl alkyl radical adduct would revert to alkene rather than cyclize, especially in dilute solution.⁹ The paucity of methods to efficiently cleave an unactivated C-Sn bond^{10,11} has undoubtedly been an added deterrent in considering the obvious potential of this approach to ring formation. We now report that trimethylstannyl radicals¹² add to the unsubstituted terminal olefinic carbon atom of a variety of activated and

(2) For a review on halocarbon-centered radicals, see: Bellus, D. Pure (2) For a review on natocarbon-centered radicals, see: Benus, D. Pure Appl. Chem. 1985, 57, 1827. See also: Fields, D. L., Jr.; Shechter, H. J. Org. Chem. 1986, 51, 3369. Brace, N. O. J. Am. Chem. Soc. 1964, 86, 523.
 (3) For aryl sulfonyl radicals, see: Chuang, C.-P. Synlett 1990, 527. (b) Chuang, C.-P.; Ngoi, T. H. J. Tetrahedron Lett. 1989, 30, 6369. (c) De Riggi, I.; Surzur, J.-M.; Bertrand, M. P. Tetrahedron 1988, 44, 7119. (d) Serra, A. C.; da Silva Corrêa, C. M. M. J. Chem. Res. 1989, 85. (c) Smith, T. A. K.; Whitham, G. H. J. Chem. Soc., Chem. Commun. 1985, 897.

(4) For silyl radicals, see: Kulicke, K. J.; Giese, B. Synlett 1990, 91. Kraus, G. A.; Liras, S. Tetrahedron Lett. 1990, 31, 5265.

(5) For some examples of radical cyclizations from dienes, see: (a) Enholm, E. J.; Kinter, K. S. J. Am. Chem. Soc. 1991, 113, 7784. (b) Knight, K. S.; Waymouth, R. M. J. Am. Chem. Soc. 1991, 113, 6268. (c) Yang, Z.-Y.; Burton, D. J. J. Org. Chem. 1991, 56, 5125. (d) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110, 8561. (e) Stork, G.; Rey-Rajanbaou, I. v. J. Am. Chem. Soc. 1988, 110, 8501. (c) Stork, G.; Reynolds, M. E. J. Am. Chem. Soc. 1988, 110, 6911. (f) Newcomb, M.;
Courtney, A. R. J. Org. Chem. 1980, 45, 1707. (g) Ashby, E. C.; DePriest,
R. J. Am. Chem. Soc. 1982, 104, 6144. Beckwith, A. L. J. Tetrahedron 1981, 37, 3073. (h) Krusic, P. J.; Fagan, P. J.; San Filippo, J., Jr. J. Am. Chem. Soc. 1977, 99, 250 and references cited therein.
(6) Fish, R. H.; Kuivila, H. G.; Tyminski, I. R. J. Am. Chem. Soc. 1967, 80

89, 5861.

(7) (a) Yoo, S.-E.; Yi, K. Y.; Lee, S.-H.; Jeong, N. Synlett 1990, 575. (b) Stork, G.; Mook, R., Jr. J. Am. Chem. Soc. 1987, 109, 2829. (c) Broka, C. A.; Reichert, D. E. C. Tetrahedron Lett. 1987, 28, 1503. (d) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547. (e) Ardisson, (f) Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104, 2321.

(8) Iyoda, J.; Shiihara, I. J. Org. Chem. 1970, 35, 4267. Kuivila, H. G. J. Organomet. Chem. 1964, 47. Neumann, W. P.; Niermann, H.; Sommer, R. Justus Liebigs Ann. Chem. 1962, 659, 27. van der Kerk, G. J. M.; Noltes, J. C. J. Appl. Chem. 1959, 106

(9) Kuivila, H. G.; Sommer, R. J. Am. Chem. Soc. 1967, 89, 5616, see also ref 1c, p 430; ref 7b.

(10) For a review, see: Abraham, M. H.; Grellier, P. L. In *The Chemistry* of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; J. Wiley & Sons: New York, 1985; Vol. 2, p 25. For a second review, see: Barker, P. J.; Winter, J. N. p 151.

(11) For simple primary alkylstannanes, see: (a) Wong, C. L.; Kochi, J.
K. J. Am. Chem. Soc. 1979, 101, 5593. (b) Lochynski, S.; Boduszek, B.;
Shine, H. J. J. Org. Chem. 1991, 56, 914. (c) Ochiai, M.; Fujita, E.; Arimoto,
M.; Yamaguchi, H. Chem. Pharm. Bull. 1984, 32, 887. For secondary alkylstannanes, see: (d) Herndon, J. W.; Wu, C.; Harp, J. J.; Kreutzer, K.
A. Synlett 1991, 1. (e) Herndon, J. W.; Wu, C. Tetrahedron Lett. 1989, 30.
(d) Herndon, J. W.; Wu, C. 767, and an environmental secondary alkylstannanes, and the secondary of the secon 6461. (f) Rieche, A.; Bertz, T. Angew. Chem. 1958, 70, 507. (g) Ochiai, M.; 6461. (1) Rieche, A.; Bertz, I. Angew. Chem. 1958, 70, 507. (g) Ocnial, M.;
Iwaki, S.; Ukita, T.; Matsuura, Y.; Shiro, M.; Nagao, Y. J. Am. Chem. Soc.
1988, 110, 4606. See also: Sosnovsky, G.; Brown, J. H. Chem. Rev. 1966,
66, 529. Alleston, D. L.; Davies, A. G. J. Chem. Soc. 1958, 1550. For other reactions, see: Still, W. C. J. Am. Chem. Soc. 1978, 100, 1482. MacDonald, T. L.; Mahalingam, S.; O'Dell, D. E. J. Am. Chem. Soc. 1981, 103, 6767. Piers, E.; Roberge, J. Y. Tetrahedron Lett. 1991, 32, 5219.

(12) Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303.

⁽¹⁴⁾ Nikonowicz, E. P.; Gorenstein, D. G. Biochemistry 1990, 29, 8845-8858.

⁽¹⁾ For recent excellent reviews, see: (a) C-Radikale. In Methoden der Organischen Chemie; Regitz, M., Giese, B., Eds.; Houben-Weyl: Stuttgart, Germany, 1989; Vol. E19A. (b) Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron 1990, 46, 1385. (c) Curran, D. P. Synthesis 1988, 417, 489. (d) Ramaiah, M. Tetrahedron 1987, 43, 3541. (e) Giese, B. Radicals in Organic Synthesis-Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford, 1986. (f) Hart, D. J. Science 1984, 223, 883.